Phys Rev Lett
November 2024
Phys Rev Lett
November 2024
The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.
View Article and Find Full Text PDFThe global spread of Aedes aegypti and the associated public health risk have stimulated the development of several mathematical models to predict population dynamics in response to biological or environmental changes in real, future, or simulated scenarios. The aim of this study is to identify published articles on differential equation-based population dynamics models of Aedes aegypti, highlight their differences and commonalities, and examine their application in surveillance and control programs. Following the PRISMA guidelines, a systematic review was conducted in seven electronic databases (Scopus, PUBMED, IEEE Xplore, Science Direct, DOAJ, Scielo, and Google Scholar), with the last update on 8 February 2023.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
The first search for the Z boson decay to ττμμ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138 fb^{-1}. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.
View Article and Find Full Text PDFUsing proton-proton collision data corresponding to an integrated luminosity of collected by the CMS experiment at , the decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the decay, is measured to be , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in and .
View Article and Find Full Text PDF