Publications by authors named "D Rangaprakash"

Article Synopsis
  • The agonist-antagonist myoneural interface (AMI) is a type of amputation surgery that aims to maintain the natural signaling processes between the central and peripheral nervous systems.
  • A study by Srinivasan et al. (2020) used neuroimaging to observe the neural activity of AMI subjects and found notable proprioceptive feedback signals to the brain.
  • The research indicates that AMI surgery leads to changes in brain connectivity that differ from traditional amputations, suggesting potential benefits for neurorehabilitation and prosthetic development.
View Article and Find Full Text PDF

Resting-state functional MRI (rs-fMRI) is a popular technology that has enriched our understanding of brain and spinal cord functioning, including how different regions communicate (connectivity). But fMRI is an indirect measure of neural activity capturing blood hemodynamics. The hemodynamic response function (HRF) interfaces between the unmeasured neural activity and measured fMRI time series.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) is an indirect measure of neural activity with the hemodynamic response function (HRF) coupling it with unmeasured neural activity. The HRF, modulated by several non-neural factors, is variable across brain regions, individuals and populations. Yet, a majority of human resting-state fMRI connectivity studies continue to assume a non-variable HRF.

View Article and Find Full Text PDF

The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord.

View Article and Find Full Text PDF

The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency coil solutions for ultra-high field imaging; however, very few commercial and research 7 Tesla radiofrequency coils currently exist for the spinal cord, and in particular those with parallel transmit capabilities. This work presents the design, testing and validation of a pTx/Rx coil for the human neck and cervical/upper-thoracic spinal cord. The pTx portion is composed of 8 dipoles to ensure high homogeneity over this large region of the spinal cord.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session37uqct5cfjeld3n04sqgbim4p1go0apm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once