MreB is a bacterial actin that is important for cell shape and cell wall biosynthesis in many bacterial species. MreB also plays crucial roles in gliding motility, but the underlying mechanism remains unknown. Here we tracked the dynamics of single MreB particles in using single-particle tracking photoactivated localization microscopy.
View Article and Find Full Text PDFThe myxobacteria are a family of soil bacteria that form biofilms of complex architecture, aligned multilayered swarms or fruiting body structures that are simple or branched aggregates containing myxospores. Here, we examined the structural role of matrix exopolysaccharide (EPS) in the organization of these surface-dwelling bacterial cells. Using time-lapse light and fluorescence microscopy, as well as transmission electron microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) electron microscopy, we found that Myxococcus xanthus cell organization in biofilms is dependent on the formation of EPS microchannels.
View Article and Find Full Text PDFFor many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility.
View Article and Find Full Text PDFThe Frz pathway of Myxococcus xanthus controls cell reversal frequency to support directional motility during swarming and fruiting body formation. Previously, we showed that phosphorylation of the response regulator FrzZ correlates with reversal frequencies, suggesting that this activity represents the output of the Frz pathway. Here, we tested the effect of different expression levels of FrzZ and its cognate kinase FrzE on M.
View Article and Find Full Text PDFGliding motility in Myxococcus xanthus is powered by flagella stator homologs that move in helical trajectories using proton motive force. The Frz chemosensory pathway regulates the cell polarity axis through MglA, a Ras family GTPase; however, little is known about how MglA establishes the polarity of gliding, because the gliding motors move simultaneously in opposite directions. Here we examined the localization and dynamics of MglA and gliding motors in high spatial and time resolution.
View Article and Find Full Text PDF