, an autonomous underwater vehicle, addresses specific unmet needs for observing and sampling a variety of phenomena in the ocean's midwaters. The midwater hosts a vast biomass, has a role in regulating climate, and may soon be exploited commercially, yet our scientific understanding of it is incomplete. has the ability to survey and track slow-moving animals and to correlate the animals' movements with critical environmental measurements.
View Article and Find Full Text PDFLocalization algorithms applied to acoustic tags for tracking marine animals can also be used to localize marine robots.
View Article and Find Full Text PDFWe demonstrate that shape-changing or morphing fins provide a new paradigm for improving the ability of vehicles to maneuver and move rapidly underwater. An ingenuous solution is employed by fish to accommodate both the need for stability of locomotion and the ability to perform tight maneuvers: Retractable fins can alter the stability properties of a vehicle to suit their particular goals. Tunas, for example, are large fish that are fast swimmers and yet they need rapid turning agility to track the smaller fish they pursue; they have perfected the use of their dorsal and ventral fins to ensure stability when retracted and rapid turning when erected.
View Article and Find Full Text PDFIndustrial-scale dumping of organic waste to the deep ocean was once common practice, leaving a legacy of chemical pollution for which a paucity of information exists. Using a nested approach with autonomous and remotely operated underwater vehicles, a dumpsite offshore California was surveyed and sampled. Discarded waste containers littered the site and structured the suboxic benthic environment.
View Article and Find Full Text PDFThe 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter.
View Article and Find Full Text PDF