Introduction: SARS-CoV-2 infection can affect other organs aside from those of respiratory system, particularly the kidney, heart, blood, digestive tract, and nervous system. COVID-19 renal compromise consists of different syndromes since proteinuria, hematuria, and acute kidney injury (AKI), until chronic kidney disease. Since COVID-19-induced renal tubular damage has been described as a potential antecedent condition to AKI installation, it was decided to evaluate how COVID-19 affects tubular function.
View Article and Find Full Text PDFHigh-throughput B-cell sequencing has opened up new avenues for investigating complex mechanisms underlying our adaptive immune response. These technological advances drive data generation and the need to mine and analyze the information contained in these large datasets, in particular the identification of therapeutic antibodies (Abs) or those associated with disease exposure and protection. Here, we describe our efforts to use artificial intelligence (AI)-based image-analyses for prospective classification of Abs based solely on sequence information.
View Article and Find Full Text PDFRecent clinical studies have revealed that severe symptoms of dengue fever are associated with low pre-existing antibody levels. These findings provide direct clinical evidence for the theory of antibody-dependent enhancement of infection (ADE), which postulates that sub-neutralizing levels of antibodies facilitate the invasion of host cells by the dengue virus. Here, we carried out molecular simulations guided by previous experiments and structural studies to explore the role of antibody fine-specificity, viral conformation, and maturation state-key aspects of dengue virology that are difficult to manipulate experimentally-on ADE in the context of primary and secondary infections.
View Article and Find Full Text PDFEbola virus (EBOV) infection is highly lethal and results in severe febrile bleeding disorders that affect humans and non-human primates. One of the therapeutic approaches for treating EBOV infection focus largely on cocktails of monoclonal antibodies (mAbs) that bind to specific regions of the EBOV glycoprotein (GP) and neutralize the virus. Recent structural studies using cryo-electron microscopy have identified key epitopes for several EBOV mAbs.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2017
We performed epitope mapping studies on the major surface glycoprotein (GP) of Ebola virus (EBOV) using Chemically Linked Peptides on Scaffolds (CLIPS), which form linear and potential conformational epitopes. This method identified monoclonal antibody epitopes and predicted additional epitopes recognized by antibodies in polyclonal sera from animals experimentally vaccinated against or infected with EBOV. Using the information obtained along with structural modeling to predict epitope accessibility, we then constructed 2 DNA vaccines encoding immunodominant and subdominant epitopes predicted to be accessible on EBOV GP.
View Article and Find Full Text PDF