Objective: This study investigated if human glioblastoma cancer cells (U87MG cell line) cultured in intentionally treated water could reduce cell migration, a prerequisite for metastasis, as compared to the same cells cultured in untreated (control) water.
Design: Three Buddhist monks entered a meditative state and directed their awareness to bottles of ultrapure water while holding the intention that the water would cause beneficial changes in U87MG. The study was conducted double-blind whereby all aspects of the study involving cell growth and migration measures, as well as all subsequent statistical evaluations, were performed without knowledge of the type of water being used.
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing.
View Article and Find Full Text PDFα-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) positive allosteric modulators (AMPAkines) have a multitude of promising therapeutic properties. The pharmaceutical development of high impact AMPAkines has, however, been limited by the appearance of calcium-dependent neuronal toxicity and convulsions in vivo. Such toxicity is not observed at exceptionally high concentrations of low impact AMPAkines.
View Article and Find Full Text PDFAMPA-type glutamate receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the mammalian brain. Ampakines, positive allosteric modulators of AMPAR, hold significant potential for the treatment of a wide range of neurological/neuropsychiatric disorders in which excitatory synaptic transmission is compromised. Low-impact ampakines are a distinct subset of ampakines that accelerate channel opening yet minimally affect receptor desensitization, which may explain their lack of seizurogenic effects at therapeutic doses in preclinical models.
View Article and Find Full Text PDFAMPA-glutamate receptor (AMPAR) dysfunction mediates multiple neurological/neuropsychiatric disorders. Ampakines bind AMPARs and allosterically enhance glutamate-elicited currents. This report describes the activity of the water-soluble ampakine CX1942 prodrug and the active moiety CX1763.
View Article and Find Full Text PDF