Publications by authors named "D R Menick"

Background: Despite a rigorous screening process, including cardiac catheterization, a subset of patients with a single right ventricle (SRV) demonstrates suboptimal short-term outcomes after the Fontan operation. The goal of this study was to perform a comprehensive assessment of diastolic function in pre-Fontan patients with an SRV using invasive reference-standard measures and determine their associations with post-Fontan outcomes.

Methods And Results: Children aged 2 to 6 years with SRV physiology undergoing pre-Fontan heart catheterization were recruited prospectively.

View Article and Find Full Text PDF

The spleen is an important mediator of both adaptive and innate immunity. As such, attempts to modulate the immune response provided by the spleen may be conducive to improved outcomes for numerous diseases throughout the body. Here, biomimicry is used to rationally design nanomaterials capable of splenic retention and immunomodulation for the treatment of disease in a distant organ, the postinfarct heart.

View Article and Find Full Text PDF

Human cardiac organoids hold remarkable potential for cardiovascular disease modeling and human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) transplantation. Here, we show cardiac organoids engineered with electrically conductive silicon nanowires (e-SiNWs) significantly enhance the therapeutic efficacy of hPSC-CMs to treat infarcted hearts. We first demonstrated the biocompatibility of e-SiNWs and their capacity to improve cardiac microtissue engraftment in healthy rat myocardium.

View Article and Find Full Text PDF

Acute cardiac injuries occur in 20%-25% of hospitalized COVID-19 patients. Herein, we demonstrate that human cardiac organoids (hCOs) are a viable platform to model the cardiac injuries caused by COVID-19 hyperinflammation. As IL-1β is an upstream cytokine and a core COVID-19 signature cytokine, it was used to stimulate hCOs to induce the release of a milieu of proinflammatory cytokines that mirror the profile of COVID-19 cytokine storm.

View Article and Find Full Text PDF

Acute cardiac injuries occur in 20-25% of hospitalized COVID-19 patients. Despite urgent needs, there is a lack of 3D organotypic models of COVID-19 hearts for mechanistic studies and drug testing. Herein, we demonstrate that human cardiac organoids (hCOs) are a viable platform to model the cardiac injuries caused by COVID-19 hyperinflammation.

View Article and Find Full Text PDF