Products from combinatorial libraries generally share a common core structure that can be exploited to improve the efficiency of virtual high-throughput screening (vHTS). In general, it is more efficient to find a method that scales with the total number of reagents (Sigma growth) rather with the number of products (Pi growth). The OptiDock methodology described herein entails selecting a diverse but representative subset of compounds that span the structural space encompassed by the full library.
View Article and Find Full Text PDFThree different QSAR methods, Comparative Molecular Field Analysis (CoMFA), classical QSAR (utilizing the CODESSA program), and Hologram QSAR (HQSAR), are compared in terms of their potential for screening large data sets of chemicals as endocrine disrupting compounds (EDCs). While CoMFA and CODESSA (Comprehensive Descriptors for Structural and Statistical Analysis) have been commercially available for some time, HQSAR is a novel QSAR technique. HQSAR attempts to correlate molecular structure with biological activity for a series of compounds using molecular holograms constructed from counts of sub-structural molecular fragments.
View Article and Find Full Text PDF