Admixtures to helium of 100 and 5 ppm of nitrogen, and 100 and 10 ppm of carbon monoxide were identified and measured in the helium discharge afterglow using an electrical probe placed into the plasma. For nitrogen and carbon monoxide gases, the measured electron energy spectra display distinct characteristic peaks (fingerprints). Location of the peaks on the energy scale is determined by the ionization energies of the analyte molecules.
View Article and Find Full Text PDFGas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.
View Article and Find Full Text PDFFlight instrumentation for the analyses of extraterrestrial environments must often perform under severely restricted conditions. Often, the detection and identification of a multitude of chemical species is required to fulfill the scientific objectives of the mission. It is therefore important that the analytical instrumentation have universal response.
View Article and Find Full Text PDFDuring the next decade or so, NASA, in conjunction with the European Space Agency, plans to send a spacecraft to the Saturnian system so that local studies of Saturn and its satellite, Titan, can be made. In order to study the atmosphere of Titan, analysis of both aerosols and gases will have to be made. To accomplish this, gas chromatographic instrumentation for the collection and analysis of organic gases and aerosols in Titan's atmosphere is being developed.
View Article and Find Full Text PDFGas chromatography has found highly successful application in NASA's flight programs. Gas chromatographs have been flown to both Mars and Venus where detailed compositional measurements were made. These instruments were quite small and relatively sensitive when compared to commercially available instruments; however, they do not appear adequate for future missions currently being planned.
View Article and Find Full Text PDF