Base editing could correct nonsense mutations that cause cystic fibrosis (CF), but clinical development is limited by the lack of delivery methods that efficiently breach the barriers presented by airway epithelia. Here, we present a novel amphiphilic shuttle peptide based on the previously reported S10 peptide that substantially improved base editor ribonucleoprotein (RNP) delivery. Studies of the S10 secondary structure revealed that the alpha-helix formed by the endosomal leakage domain (ELD), but not the cell penetrating peptide (CPP), was functionally important for delivery.
View Article and Find Full Text PDFDelivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys.
View Article and Find Full Text PDFDeveloping delivery vectors capable of transducing genetic material across the lung epithelia and mucus barrier is a major challenge and of great interest to enable gene therapies to treat pulmonary diseases. Recombinant Adeno-associated Viruses (rAAVs) have emerged as attractive candidates among viral and non-viral vectors due to their broad tissue tropism, ability to transduce dividing and quiescent cells, and their safety profile in current human applications. While rAAVs have demonstrated safety in earlier clinical trials for lung disease applications, there are still some limitations regarding rAAV-transgene delivery in pulmonary cells.
View Article and Find Full Text PDFBackground: The practice of continuous palliative sedation until death is the subject of much medical and ethical debate, which is reflected in the inconsistency that persists in the literature regarding the definition and indications of palliative sedation.
Aim: This study aims to gain a better understanding of palliative care clinicians' experiences with continuous palliative sedation.
Design: We conducted a qualitative study based on focus group discussions.
Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, we derive the S315 peptide as an improvement over S10 in delivering base editor RNP.
View Article and Find Full Text PDF