Publications by authors named "D R Goldhill"

The evolution of SARS-CoV-2 variants with increased fitness has been accompanied by structural changes in the spike (S) proteins, which are the major target for the adaptive immune response. Single-particle cryo-EM analysis of soluble S protein from SARS-CoV-2 variants has revealed this structural adaptation at high resolution. The analysis of S trimers in situ on intact virions has the potential to provide more functionally relevant insights into S structure and virion morphology.

View Article and Find Full Text PDF

In this issue of Cell Host & Microbe, Karakus et al. find that an influenza virus enters cells by exclusively binding to a protein instead of sugars.

View Article and Find Full Text PDF

Human ANP32A and ANP32B are essential but redundant host factors for influenza virus genome replication. While most influenza viruses cannot replicate in edited human cells lacking both ANP32A and ANP32B, some strains exhibit limited growth. Here, we experimentally evolve such an influenza A virus in these edited cells and unexpectedly, after 2 passages, we observe robust viral growth.

View Article and Find Full Text PDF
Article Synopsis
  • Chickens with genetic edits that alter the ANP32A protein show resistance to avian influenza, preventing infections in most cases.
  • When exposed to a stronger virus dose, some edited chickens still got infected due to mutations in the virus that adapted to the changes in the chicken's genes.
  • Further genome editing to remove additional related proteins (ANP32B and ANP32E) successfully eliminated all viral growth, highlighting the need for multiple genetic changes to effectively combat viral adaptations.
View Article and Find Full Text PDF

ANP32 proteins, which act as influenza polymerase cofactors, vary between birds and mammals. In mammals, ANP32A and ANP32B have been reported to serve essential but redundant roles to support influenza polymerase activity. The well-known mammalian adaptation PB2-E627K enables influenza polymerase to use mammalian ANP32 proteins.

View Article and Find Full Text PDF