Early life sleep is important for neuronal development. Using the highly social prairie vole rodent model, we have previously reported that early life sleep disruption (ELSD) during the preweaning period results in interference with social bonding and increases ethanol consumption following a stressor in adulthood. Furthermore, ELSD increases parvalbumin expression and reduces glutamatergic neurotransmission in cortical regions in adult prairie voles.
View Article and Find Full Text PDFEarly life sleep is important for neuronal development and maturation. Using the highly social prairie vole rodent model, we have previously reported that early-life sleep disruption (ELSD) during the pre-weaning period postnatal day (P)14 to 21 results in adult interference with social bonding and increases ethanol consumption following a stressor. Furthermore, we have reported increased parvalbumin expression and reduced glutamatergic neurotransmission in cortical regions in adult prairie voles that experienced this paradigm.
View Article and Find Full Text PDFCannabis Cannabinoid Res
August 2024
Cannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood.
View Article and Find Full Text PDFCannabis is the most used illicit drug in the United States. With many states passing legislation to permit its recreational use, there is concern that cannabis use among adolescents could increase dramatically in the coming years. Historically, it has been difficult to model real-world cannabis use to investigate the causal relationship between cannabis use in adolescence and behavioral and neurobiological effects in adulthood.
View Article and Find Full Text PDFCannabis is the most used drug during adolescence, which is a period of enhanced cortical plasticity and synaptic remodeling that supports behavioral, cognitive, and emotional maturity. In this chapter, we review preclinical studies indicating that adolescent exposure to cannabinoids has lasting effects on the morphology and synaptic organization of the prefrontal cortex and associated circuitry, which may lead to cognitive dysfunction later in life. Additionally, we reviewed sex differences in the effects of adolescent cannabinoid exposure with a focus on brain systems that support cognitive functioning.
View Article and Find Full Text PDF