Publications by authors named "D R Cue"

The SaeRS two-component regulatory system of Staphylococcus aureus is known to affect the expression of many genes. The SaeS protein is the histidine kinase responsible for phosphorylation of the response regulator SaeR. In S.

View Article and Find Full Text PDF

A major constituent of many Staphylococcus aureus biofilms is a polysaccharide known as the polysaccharide intercellular adhesin, or poly N-acetylglucosamine (PIA/PNAG). PIA/PNAG is synthesized by the 4 gene products of the icaADBC operon, which is negatively regulated by the divergently transcribed icaR gene. We previously reported the identification of a gene, rbf, involved in the positive transcriptional regulation of icaADBC transcription by repressing icaR in S.

View Article and Find Full Text PDF

The formation of biofilms by Staphylococcus aureus and Staphylococcus epidermidis is an important aspect of many staphylococcal infections, most notably endocarditis, osteomyelitis and infections associated with indwelling medical devices. The major constituents of staphylococcal biofilms are polysaccharides, such as poly N-acetyl glucosamine (PIA/PNAG), cell surface and secreted bacterial proteins, and extracellular DNA. The exact composition of biofilms often varies considerably between different strains of staphylococci and between different sites of infection by the same strain.

View Article and Find Full Text PDF

Background: Single-copy integration vectors based upon the site-specific recombination systems of bacteriophage are invaluable tools in the study of bacterial pathogenesis. The utility of such vectors is often limited, however, by the fact that integration often results in the inactivation of bacterial genes or has undesirable effects on gene transcription. The aim of this study is to develop an integration vector that does not have a detectable effect on gene transcription upon integration.

View Article and Find Full Text PDF

Biofilms contribute to virulence of Staphylococcus aureus. Formation of biofilms is multifactorial, involving polysaccharide, protein, and DNA components, which are controlled by various regulators. Here we report that deletion of the rsp gene resulted in an increase in biofilm formation in strain MW2, suggesting that Rsp is a repressor of biofilm formation.

View Article and Find Full Text PDF