Publications by authors named "D R Cerven"

In this study, we examined the capacity of the Porcine Corneal Ocular Reversibility Assay (PorCORA) to classify the reversibility of ocular effects for 32 test compounds (20 reversible, 12 irreversible) from various chemical classes. PorCORA predicted 28 of 32 compounds correctly when compared to historical rabbit eye test data. The correlation coefficient for PorCORA versus historical rabbit test data was 0.

View Article and Find Full Text PDF

Personal care product manufacturers have used a broad spectrum of alternative ocular irritation assays during the past two decades because these tests do not require the use of live animals, they provide reliable predictive data, and they are relatively inexpensive to conduct. To complement these assays, the ex vivo Porcine Corneal Opacity Reversibility Assay (PorCORA) was recently developed using a corneal culture model to predict reversibility of ocular irritants. Three commercially available consumer products (a shampoo, a hair color glaze, and a hair colorant system containing 12% hydrogen peroxide) were each tested in two PorCORA study replicates in order to assess potential ocular damage reversibility for surfactant-, propylene carbonate-, and peroxide-based formulations, respectively.

View Article and Find Full Text PDF

The Chorioallantoic Membrane Vascular Assay (CAMVA) and Bovine Corneal Opacity and Permeability (BCOP) test are widely used to predict ocular irritation potential for consumer-use products. These in vitro assays do not require live animals, produce reliable predictive data for defined applicability domains compared to the Draize rabbit eye test, and are rapid and inexpensive. Data from 304 CAMVA and/or BCOP studies (319 formulations) were surveyed to determine the feasibility of predicting ocular irritation potential for various formulations.

View Article and Find Full Text PDF

Several alternative assays exist to assess ocular irritancy without the use of live animals. However, these assays cannot address ocular injury reversibility. Reversibility is an issue critical to regulatory authorities and manufactures of commercial products, as ocular irritation caused by misuse or accidental exposure to a product may cause irreversible eye damage.

View Article and Find Full Text PDF

Recombinant human holo-lactoferrin (holo-rhLF) was orally administered, via gavage, to Wistar rats at 1000, 500 and 100mg/kgbw/day for 28 days. The test article, holo-rhLF, was expressed in rice grain, extracted, purified and saturated with iron. During the 28-day period, animals were examined for evidence of toxicity.

View Article and Find Full Text PDF