Biochim Biophys Acta
July 1999
Activation of phospholipase D occurs in response to a wide variety of hormones, growth factors, and other extracellular signals. The initial product of phospholipase D, phosphatidic acid (PA), is thought to serve a signaling function, but the intracellular targets for this lipid second messenger are not clearly identified. The production of PA in human neutrophils is closely correlated with the activation of NADPH oxidase, the enzyme responsible for the respiratory burst.
View Article and Find Full Text PDFPhosphatidic acid (PA), generated by phospholipase D activation, has been linked to the activation of the neutrophil respiratory burst enzyme, NADPH oxidase; however, the intracellular enzyme targets for PA remain unclear. We have recently shown (McPhail, L. C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 1995
The phosphorylation-dependent mechanisms regulating activation of the human neutrophil respiratory-burst enzyme, NADPH oxidase, have not been elucidated. We have shown that phosphatidic acid (PA) and diacylglycerol (DG), products of phospholipase activation, synergize to activate NADPH oxidase in a cell-free system. We now report that activation by PA plus DG involves protein kinase activity, unlike other cell-free system activators.
View Article and Find Full Text PDFNADPH oxidase, the respiratory burst enzyme of human neutrophils, is a multi-component complex that is assembled and activated during stimulation of the cells by inflammatory or phagocytic stimuli. The signal mechanisms leading to activation of the enzyme are unclear, but it is likely that phospholipases are involved. Recent work has shown that phosphatidic acid, the initial product of phospholipase D activation, is a weak activator of NADPH oxidase in a cell-free system.
View Article and Find Full Text PDFThe signal transductional mechanisms regulating the activation of NADPH oxidase, the respiratory burst enzyme in phagocytic cells, are not completely understood. Receptors for most physiologic stimuli trigger the activation of various phospholipases, including phospholipases A2, C, and D. The lipid mediators formed (arachidonic acid, 1,2-diacylglycerol, and phosphatidic acid) have been implicated as second messengers in the induction of the respiratory burst.
View Article and Find Full Text PDF