Publications by authors named "D Pyring"

The evaluation of a series of aminoisoindoles as β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors and the discovery of a clinical candidate drug for Alzheimer's disease, (S)-32 (AZD3839), are described. The improvement in permeability properties by the introduction of fluorine adjacent to the amidine moiety, resulting in in vivo brain reduction of Aβ40, is discussed. Due to the basic nature of these compounds, they displayed affinity for the human ether-a-go-go related gene (hERG) ion channel.

View Article and Find Full Text PDF

The synthesis and SAR of new β-amyloid binding agents are reported. Evaluation of important properties for achieving good signal-to-background ratio is described. Compounds 27, 33, and 36 displayed desirable lipophilic and pharmacokinetic properties.

View Article and Find Full Text PDF

The syntheses and SAR of new series of beta-amyloid binding agents are reported. The effort to optimize signal-to-background ratios for these ligands are described. Compounds 8, 21 and 30 displayed desirable lipophilicity and pharmacokinetic properties.

View Article and Find Full Text PDF

A series of 2-anilinothiazolones were prepared as inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). The most potent compounds contained a 2-chloro or 2-fluoro group on the aniline ring with an isopropyl substituent on the 5-position of the thiazolone ring (compounds 2 and 3, respectively). The binding mode was determined through the X-ray co-crystal structure of the enzyme with compound 3.

View Article and Find Full Text PDF

HIV-1 protease is a pivotal enzyme in the later stages of the viral life cycle which is responsible for the processing and maturation of the virus particle into an infectious virion. As such, HIV-1 protease has become an important target for the treatment of AIDS, and efficient drugs have been developed. However, negative side effects and fast emerging resistance to the current drugs have necessitated the development of novel chemical entities in order to exploit different pharmacokinetic properties as well as new interaction patterns.

View Article and Find Full Text PDF