Publications by authors named "D Pryde"

STING mediates innate immune responses that are triggered by the presence of cytosolic DNA. Activation of STING to boost antigen recognition is a therapeutic modality that is currently being tested in cancer patients using nucleic-acid based macrocyclic STING ligands. We describe here the discovery of 3,4-dihydroquinazolin-2(1H)-one based 6,6-bicyclic heterocyclic agonists of human STING that activate all known human variants of STING with high potency.

View Article and Find Full Text PDF

The adaptor protein STING plays a major role in innate immune sensing of cytosolic nucleic acids, by triggering a robust interferon response. Despite the importance of this protein as a potential therapeutic target for serious unmet medical conditions including cancer and infectious disease there remains a paucity of STING ligands. Starting with a benzothiazinone series of weak STING activators (human EC ∼10 μM) we identified several chemotypes with sub-micromolar STING activity across all the major protein polymorphs.

View Article and Find Full Text PDF

The cGAS/STING pathway initiates an innate immune response when DNA is detected in the cytosol. DNA bound cGAS synthesizes cyclic dinucleotides which bind and activate the adaptor STING, leading to downstream secretion of Type I interferons and other pro-inflammatory NFκB pathway cytokines. In the mouse, the STING driven innate immune response is central to immune based clearance of various tumors and this has triggered a significant effort focused on the discovery of human STING agonists for the treatment of cancer.

View Article and Find Full Text PDF

Valproic acid (VPA) is an anticonvulsant drug that is also used to treat migraines and bipolar disorder. Its proposed biological targets include human voltage-gated sodium channels, among other membrane proteins. We used the prokaryotic NavMs sodium channel, which has been shown to be a good exemplar for drug binding to human sodium channels, to examine the structural and functional interactions of VPA.

View Article and Find Full Text PDF

The design, optimization, and evaluation of a series of novel imidazopyridazine-based subtype-selective positive allosteric modulators (PAMs) for the GABA ligand-gated ion channel are described. From a set of initial hits multiple subseries were designed and evaluated based on binding affinity and functional activity. As designing in the desired level of functional selectivity proved difficult, a probability-based assessment was performed to focus the project's efforts on a single subseries that had the greatest odds of delivering the target profile.

View Article and Find Full Text PDF