Trends toward the use of irradiator parameter release (also called machine-based release) put pressure on equipment manufacturers to guarantee accuracy and reliability of monitored process parameters. In the specific case of X-ray processing, relevance of these monitored parameters is questionable due to the additional difficulty coming from the fact that the X-ray converter does not have associated parameters or a monitored feedback mechanism. To bridge this gap, this article presents a novel method to verify in real-time consistency of certain X-ray field properties.
View Article and Find Full Text PDFObjectives: Prompt gamma (PG) imaging has previously been demonstrated for use in proton range verification of a brain treatment with a homogeneous target region. In this study, the feasibility of PG imaging to detect anatomic change within a heterogeneous region is presented.
Methods: A prompt gamma camera recorded several fractions of a patient treatment to the base of skull.
Int J Radiat Oncol Biol Phys
September 2017
Purpose: To report the first clinical results and value assessment of prompt gamma imaging for in vivo proton range verification in pencil beam scanning mode.
Methods And Materials: A stand-alone, trolley-mounted, prototype prompt gamma camera utilizing a knife-edge slit collimator design was used to record the prompt gamma signal emitted along the proton tracks during delivery of proton therapy for a brain cancer patient. The recorded prompt gamma depth detection profiles of individual pencil beam spots were compared with the expected profiles simulated from the treatment plan.
Prompt γ-ray imaging with a knife-edge shaped slit camera provides the possibility of verifying proton beam range in tumor therapy. Dedicated experiments regarding the characterization of the camera system have been performed previously. Now, we aim at implementing the prototype into clinical application of monitoring patient treatments.
View Article and Find Full Text PDFMore and more camera concepts are being investigated to try and seize the opportunity of instantaneous range verification of proton therapy treatments offered by prompt gammas emitted along the proton tracks. Focusing on one-dimensional imaging with a passive collimator, the present study experimentally compared in combination with the first, clinically compatible, dedicated camera device the performances of instances of the two main options: a knife-edge slit (KES) and a multi-parallel slit (MPS) design. These two options were experimentally assessed in this specific context as they were previously demonstrated through analytical and numerical studies to allow similar performances in terms of Bragg peak retrieval precision and spatial resolution in a general context.
View Article and Find Full Text PDF