Biodiesel is considered as a valuable and less toxic alternative to diesel. However, cellular and molecular effects of repeated exposure to biodiesel emissions from a recent engine equipped with a diesel particle filter (DPF) remain to be characterized. To gain insights about this point, the lung transcriptional signatures were analyzed for rats (n = 6 per group) exposed to filtered air, 30% rapeseed biodiesel (B30) blend or reference diesel (RF0), upstream and downstream a DPF, for 3 weeks (3 h/day, 5 days/week).
View Article and Find Full Text PDFTraffic air pollution is a major health problem and is recognized as an important risk factor for cardiovascular (CV) diseases. In a previous experimental study, we showed that diesel exhaust (DE) exposures induced cardiac mitochondrial and CV dysfunctions associated with the gaseous phase. Here, we hypothesized that NO exposures to levels close to those found in DE induce a mitochondrial reactive oxygen species (ROS) production, which contribute to an endothelial dysfunction, an early indicator for numerous CV diseases.
View Article and Find Full Text PDFDiesel exhaust (DE) contributes to air pollution, an important risk factor for cardiovascular diseases. However, the mechanisms by which DE exposure induces cardiovascular dysfunction remain unknown and there is still debate on the contribution of the primary particulate matter (PM) fraction compared to the gaseous phase. Although the mitochondria play a key role in the events leading to cardiovascular diseases, their role in DE-induced cardiovascular effects has not been investigated.
View Article and Find Full Text PDFThe contribution of diesel exhaust to atmospheric pollution is a major concern for public health, especially in terms of occurrence of lung cancers. The present study aimed at addressing the toxic effects of a repeated exposure to these emissions in an animal study performed under strictly controlled conditions. Rats were repeatedly exposed to the exhaust of diesel engine.
View Article and Find Full Text PDFUsing an air-liquid interface (ALI) device in dynamic conditions, we evaluated the efficiency of fuel after-treatment strategies (diesel oxidation catalysis, DOC, and diesel particulate filter, DPF, devices) and the impact of 7% and 30% rapeseed methyl esters (RME) blending on oxidative stress and genotoxicity induced in A549 lung cells after 3h exposure to whole Diesel exhausts. Oxidative stress was studied using assays of ROS production, glutathione level, catalase and superoxide-dismutase (SOD) activities. No oxidative stress and no clear differences on cytotoxicity patterns between biodiesel and standard Diesel exhausts were found.
View Article and Find Full Text PDF