Periprosthetic joint infections (PJIs) in arthroplasty and osteosynthesis-associated infections (OAIs) in reconstructive surgery still represent a challenging complication in orthopaedics and traumatology causing a burden worsening the patient's quality of life, for caregiver and treating physicians, and for healthcare systems. PJIs and OAIs are the result of bacterial adhesion over an implant surface with subsequent biofilm formation. Therefore, the clinical pathological outcome is a difficult-to-eradicate persistent infection.
View Article and Find Full Text PDFHerein, the synthesis and characterization of a novel composite biopolymer scaffold-based on equine type I collagen and hyaluronic acid-were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm associated with ester carbonyl stretch.
View Article and Find Full Text PDFTendon healing still represents a challenge for clinicians because it is slow and incomplete. The most injured is the Achilles tendon, and surgery is the therapeutic strategy often adopted because it provides a quicker functional recovery. Peritendinous adhesions are the main complication of surgery with hyperplasia and chemotaxis of fibroblasts.
View Article and Find Full Text PDFStudy Design: An in vivo study was designed to compare the efficacy of biomimetic magnesium-hydroxyapatite (MgHA) and of human demineralized bone matrix (HDBM), both dispersed in a mixture of biomimetic MgHA nanoparticles, with that of an autologous bone graft.
Objective: The objective of this study was to evaluate 2 new bone substitutes as alternatives to a bone autograft for spinal fusion, determining their osteoinductive and osteoconductive properties, and their capacity of remodeling, using a large animal model.
Summary Of Background Data: Spinal fusion is a common surgical procedure and it is performed for different conditions.
Despite several efforts to find suitable alternatives to autologous bone, no bone substitute currently available provides the same characteristics and properties. Nevertheless, among the wide range of materials proposed as bone substitutes, calcium phosphate materials represent the most promising category and the present study is aimed at improving the knowledge on non-stoichiometric magnesium-doped hydroxyapatite substitutes (Mg-HA), tested in two different formulations: Mg-HA Putty and Mg-HA Granules. These bone substitutes were implanted bilaterally into iliac crest bone defects in healthy sheep and comparative histological, histomorphometric, microhardness and ultrastructural assessments were performed 9, 12, 18 and 24 months after surgery to elucidate bone tissue apposition, mineralization and material degradation in vivo.
View Article and Find Full Text PDF