Far side has been identified in the literature as a potential cause of numerous injuries and fatalities. Euro NCAP developed a far side test protocol to be performed to assess adult protection. A monitoring phase was undertaken between January 2018 and December 2019, and the far side assessment will become part of the rating for all vehicles launched in 2020 onward.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2018
As human body finite element models become more integrated with the design of safety countermeasures and regulations, novel models need to be developed that reflect the variation in the population's anthropometry. However, these new models may be missing information which will need to be translated from existing models. During the development of a 5th percentile female occupant model (F05), cortical thickness information of the coxal bone was unavailable due to resolution limits in the computed tomography (CT) scans.
View Article and Find Full Text PDFObjective: Evaluating the biofidelity of pedestrian finite element models (PFEM) using postmortem human subjects (PMHS) is a challenge because differences in anthropometry between PMHS and PFEM could limit a model's capability to accurately capture cadaveric responses. Geometrical personalization via morphing can modify the PFEM geometry to match the specific PMHS anthropometry, which could alleviate this issue. In this study, the Total Human Model for Safety (THUMS) PFEM (Ver 4.
View Article and Find Full Text PDFObjective: The goal of this study was to evaluate the biofidelity of the Total Human Model for Safety (THUMS; Ver. 4.01) pedestrian finite element models (PFEM) in a whole-body pedestrian impact condition using a well-characterized generic pedestrian buck model.
View Article and Find Full Text PDFObjective: The objective of the current study was to evaluate the whole-body kinematic response of the Total Human Model for Safety (THUMS) occupant model in controlled laboratory rollover tests by comparing the model response to postmortem human surrogate (PMHS) kinematic response targets published in 2014.
Methods: A computational model of the parametric vehicle buck environment was developed and the AM50 THUMS occupant model (Ver 4.01) was subjected to a pure dynamic roll at 360°/s in trailing-side front-row seating position.