Publications by authors named "D Poppendieck"

Proton transfer reaction mass spectrometry (PTR-MS) is often employed to characterize gas-phase compounds in both indoor and outdoor environments. PTR-MS measurements are usually made without upstream chromatographic separation, so it can be challenging to differentiate between an ion of interest, its isomers, and fragmentation products from other species all detected at the same mass-to-charge ratio. These isomeric contributions and fragmentation interferences can confound the determination of accurate compound mixing ratios, the assignment of accurate chemical properties, and corresponding analyses of chemical fate.

View Article and Find Full Text PDF

Every year in the United States conifers are purchased to serve as Christmas trees in homes where they emit volatile organic compounds (VOCs) to the indoor environment. Although many studies have measured the ecosystem-level emissions of VOCs from conifers outdoors (characterizing monoterpene, isoprene, and aldehyde emissions), little is known about VOC emission rates once a conifer is brought indoors. Using a proton transfer reaction-mass spectrometer we characterized the VOCs emitted from a freshly cut Douglas Fir for 17 days in an environmentally controlled chamber.

View Article and Find Full Text PDF

Previous time-integrated (2 h to 4 h) measurements show that total gas-phase water-soluble organic carbon (WSOC) is 10 to 20 times higher inside homes compared to outside. However, concentration dynamics of WSOC and total particle phase WSOC (WSOC)-are not well understood. During the Chemical Assessment of Surfaces and Air (CASA) experiment, we measured concentration dynamics of WSOC and WSOC inside a residential test facility in the house background and during scripted activities.

View Article and Find Full Text PDF

The Chemical Assessment of Surfaces and Air (CASA) study aimed to understand how chemicals transform in the indoor environment using perturbations (, cooking, cleaning) or additions of indoor and outdoor pollutants in a well-controlled test house. Chemical additions ranged from individual compounds (, gaseous ammonia or ozone) to more complex mixtures (, a wildfire smoke proxy and a commercial pesticide). Physical perturbations included varying temperature, ventilation rates, and relative humidity.

View Article and Find Full Text PDF

Devices using 222 nm germicidal ultraviolet light (GUV222) have been marketed to reduce virus transmission indoors with low risk of occupant harm from direct UV exposure. GUV222 generates ozone, an indoor air pollutant and oxidant, under constrained laboratory conditions, but the chemistry byproducts of GUV222-generated ozone in real indoor spaces is uncharacterized. We deployed GUV222 in a public restroom, with an air change rate of 1 h one weekend and 2 h the next, to measure ozone formation and byproducts generated from ozone chemistry indoors.

View Article and Find Full Text PDF