Publications by authors named "D Poppe"

Craniocervical instability (CCI) is increasingly recognized in hereditary disorders of connective tissue and in some patients following suboccipital decompression for Chiari malformation (CMI) or low-lying cerebellar tonsils (LLCT). CCI is characterized by severe headache and neck pain, cervical medullary syndrome, lower cranial nerve deficits, myelopathy, and radiological metrics, for which occipital cervical fusion (OCF) has been advocated. We conducted a retrospective analysis of patients with CCI and Ehlers-Danlos syndrome (EDS) to determine whether the surgical outcomes supported the criteria by which patients were selected for OCF.

View Article and Find Full Text PDF

Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct 'effector' chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. To overcome this we have created a modular combinatorial epigenome editing platform, called SSSavi.

View Article and Find Full Text PDF

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown.

View Article and Find Full Text PDF

DNA methylation in neurons is directly linked to neuronal genome regulation and maturation. Unlike other tissues, vertebrate neurons accumulate high levels of atypical DNA methylation in the CH sequence context (mCH) during early postnatal brain development. Here, we investigate to what extent neurons derived in vitro from both mouse and human pluripotent stem cells recapitulate in vivo DNA methylation patterns.

View Article and Find Full Text PDF

Current approaches to staging chronic liver diseases have limited utility for predicting liver cancer risk. Here, we employed single-nucleus RNA sequencing (snRNA-seq) to characterize the cellular microenvironment of healthy and pre-malignant livers using two distinct mouse models. Downstream analyses unraveled a previously uncharacterized disease-associated hepatocyte (daHep) transcriptional state.

View Article and Find Full Text PDF