Publications by authors named "D Popova"

Advanced laryngeal squamous cell carcinoma (LSCC) is the second most prevalent type of head and neck squamous cell carcinoma (HNSCC). Identifying microRNAs (miRNAs) related to key regulatory molecules or mechanisms could offer an alternative approach to developing new treatment strategies. The aim of our study is to evaluate significant correlations among deregulated miRNAs in advanced laryngeal carcinoma and to analyze, in silico, their strength of association, targets, and the most deregulated pathways.

View Article and Find Full Text PDF

This paper reports on two flash-mode experiments that test redundant descriptions of small (2-4) cardinalities, borderline (5-8) cardinalities, and color in referential communication. It provides further support for the idea that small cardinalities are more salient (due to subitizing), less sensitive to visual context, and therefore give rise to higher over-specification rates than color. Because of greater salience, Russian speakers more often use prenominal positions for numerals than for color adjectives.

View Article and Find Full Text PDF

Laryngeal squamous cell carcinoma (LSCC) is a significant global health burden, for which there has been limited evidence of improved survival rates. Although the roles of hypoxia-inducible factor (HIF)1α and HIF2α have been well documented in hypoxia, the involvement of HIF3α, particularly in LSCC, has been inadequately explored. The present study aimed to investigate the correlation between HIFα subunits and the hypoxia-related long noncoding RNAs (lncRNAs) MALAT1 and HOTAIR in 63 patients diagnosed with LSCC.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified noncoding polymorphisms within the gene. encodes GIRK2, a subunit of a G-protein-coupled inwardly rectifying potassium channel that regulates neuronal excitability. We studied the effect of upregulating using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors).

View Article and Find Full Text PDF