Human papillomavirus (HPV) E7 plays a major role in HPV-induced malignancy, perturbing cell cycle regulation, and driving cell proliferation. Major targets of cancer-causing HPV E7 proteins are the pRB family of tumor suppressors, which E7 targets for proteasome-mediated degradation and whose interaction is promoted through an acidic patch, downstream of the LXCXE motif in E7, that is subject to phosphorylation by casein kinase II (CKII). In this study we show that HPV-16 E7 targets the AP2-complex, which plays a critical role in cargo recognition in clathrin-mediated endocytosis.
View Article and Find Full Text PDFPrevious studies have shown that the endoplasmic reticulum (ER)-anchored protein VAP is strictly required by human papillomavirus type 16 (HPV-16) for successful infectious entry. Entry appeared to be mediated in part through the induction of endosomal tubulation and subsequent transport of the virion to the trans-Golgi network (TGN). In this study, we were interested in investigating whether this mechanism of infectious entry is conserved across multiple Papillomavirus types.
View Article and Find Full Text PDFTo infect mammalian cells, all infectious viruses must cross a common set of biophysical membrane barriers to gain access to the cell. The virus capsid proteins attach to a host cell, become endocytosed, and traffic the viral genome to sites of replication. To do this they must interact with the membrane-confined organelles that control endocytosis, endosomal sorting, processing, and degradation of biological molecules.
View Article and Find Full Text PDF