We report the observation of a two-dimensional (2D) dam break flow of a photon fluid in a nonlinear optical crystal. By precisely shaping the amplitude and phase of the input wave, we investigate the transition from one-dimensional (1D) to 2D nonlinear dynamics. We observe wave breaking in both transverse spatial dimensions with characteristic timescales determined by the aspect ratio of the input box-shaped field.
View Article and Find Full Text PDFOptical beams with nonuniform polarization offer enhanced capabilities for information transmission, boasting increased capacity, security, and resilience. These beams possess vectorial features that are spatially organized within localized three-dimensional regions, forming tensors that can be harnessed across a spectrum of applications spanning quantum physics, imaging, and machine learning. However, when subjected to the effect of the transmission channel, the tensorial propagation leads to a loss of data integrity due to the entanglement of spatial and polarization degrees of freedom.
View Article and Find Full Text PDFWe experimentally and theoretically investigate thermal domain evolution in near-transition KTN:Li. Results allow us to establish how polarization supercrystals form, a hidden 3D topological phase composed of hypervortex defects. These are the result of six converging polarization vortices, each associated to one orientation of the 3D broken inversion symmetry.
View Article and Find Full Text PDFExtreme waves are intense and unexpected wavepackets ubiquitous in complex systems. In optics, these rogue waves are promising as robust and noise-resistant beams for probing and manipulating the underlying material. Localizing large optical power is crucial especially in biomedical systems, where, however, extremely intense beams have not yet been observed.
View Article and Find Full Text PDFStates of light encoding multiple polarizations - vector beams - offer unique capabilities in metrology and communication. However, their practical application is limited by the lack of methods for measuring many polarizations in a scalable and compact way. Here we demonstrate polarimetry of vector beams in a single shot without any polarization optics.
View Article and Find Full Text PDF