Publications by authors named "D Philp"

Transient states maintained by energy dissipation are an essential feature of dynamic systems where structures and functions are regulated by fluxes of energy and matter through chemical reaction networks. Perfected in biology, chemically fueled dissipative networks incorporating nanoscale components allow the unique properties of nanomaterials to be bestowed with spatiotemporal adaptability and chemical responsiveness. We report the transient dispersion of gold nanoparticles in water, powered by dissipation of a chemical fuel.

View Article and Find Full Text PDF

Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane, in which two cyclobis(paraquat-p-phenylene) (CBPQT) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop.

View Article and Find Full Text PDF

Supramolecular polymers are materials in which the connections between monomers in the polymer main chain are non-covalent bonds. This area has seen rapid expansion in the last two decades and has been exploited in several applications. However, suitable contiguous hydrogen-bond arrays can be difficult to synthesize, placing some limitations on the deployment of supramolecular polymers.

View Article and Find Full Text PDF

Establishing programmable and self-sustaining replication networks in pools of chemical reagents is a key challenge in systems chemistry. Self-replicating templates are formed from two constituent components with complementary recognition and reactive sites via a slow bimolecular pathway and a fast template-directed pathway. Here, we re-engineer one of the components of a synthetic replicator to encode an additional recognition function, permitting the assembly of a binary complex between the components that mediates replicator formation through a template-independent pathway, which achieves maximum rate acceleration at early time points in the replication process.

View Article and Find Full Text PDF

The efficient preparation of single-crystalline ionic polymers and fundamental understanding of their structure-property relationships at the molecular level remains a challenge in chemistry and materials science. Here, we describe the single-crystal structure of a highly ordered polycationic polymer (polyelectrolyte) and its proton conductivity. The polyelectrolyte single crystals can be prepared on a gram-scale in quantitative yield, by taking advantage of an ultraviolet/sunlight-induced topochemical polymerization, from a tricationic monomer-a self-complementary building block possessing a preorganized conformation.

View Article and Find Full Text PDF