Although tissue plasminogen activator (tPA) is known to promote neuronal remodeling in the CNS, no mechanism of how this plastic function takes place has been reported so far. We provide here in vitro and in vivo demonstrations that this serine protease neutralizes inhibitory chondroitin sulfate proteoglycans (CSPGs) by promoting their degradation via the direct activation of endogenous type 4 disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS-4). Accordingly, in a model of compression-induced spinal cord injury (SCI) in rats, we found that administration of either tPA or its downstream effector ADAMTS-4 restores the tPA-dependent activity lost after the SCI and thereby, reduces content of CSPGs in the spinal cord, a cascade of events leading to an improved axonal regeneration/sprouting and eventually long term functional recovery.
View Article and Find Full Text PDFChronic persistant pain is very challenging as the patient and his/her therapist are confronted with a lack of explanation about the origin of pain. The relationship has also to face many obstacles such as psychological strain or psychosocial tensions such as disagreements about the patients working capacity. Nevertheless continuing attention from a solid and secure therapist may progressively lead to changes in pain experience, the emergence of emotions and improved therapist patient interactions.
View Article and Find Full Text PDFPrimary cultures of motoneurons represent a good experimental model for studying mechanisms underlying certain spinal cord pathologies, such as amyotrophic lateral sclerosis and spinal bulbar muscular atrophy (Kennedy's disease). However, a major problem with such culture systems is the relatively short cell survival times, which limits the extent of motoneuronal maturation. In spite of supplementing culture media with various growth factors, it remains difficult to maintain motoneurons viable longer than 10 days in vitro.
View Article and Find Full Text PDFThis study aimed to provide detailed data on mitochondrial respiration of normal astrocyte cell lines derived from rat embryonic spinal cord. Astrocytes in early passages (EP), cultured without pyruvate for more than 35 passages, defined here as late passages (LP), undergo spontaneous transformation. To study initial steps in cell transformation, EP data were compared with those of LP cells.
View Article and Find Full Text PDF