This paper describes the use of a highly crystalline conductive 2D copper(hexaiminobenzene) (Cu(HIB)) as an ultrasensitive (limit of detection of 1.8 part-per-billion), highly selective, reversible, and low power chemiresistive sensor for nitric oxide (NO) at room temperature. The Cu(HIB)-based sensors retain their sensing performance in the presence of humidity, and exhibit strong signal enhancement towards NO over other highly toxic reactive gases, such as NO, HS, SO, NH, CO, as well as CO.
View Article and Find Full Text PDFAlcohol approach bias, a tendency to approach rather than to avoid alcohol and alcohol-related cues regardless of associated negative consequences, is an emerging key characteristic of alcohol use disorder (AUD). Reaction times from the Approach-Avoidance Task (AAT) can be used to quantify alcohol approach bias. However, only a handful of studies have investigated the neural correlates of implicit alcohol approach behavior.
View Article and Find Full Text PDF2D materials can be isolated as monolayer sheets when interlayer interactions involve weak van der Waals forces. These atomically thin structures enable novel topological physics and open chemical questions of how to tune the structure and properties of the sheets while maintaining them as isolated monolayers. Here, this work investigates 2D electroactive sheets that exfoliate in solution into colloidal nanosheets, but aggregate upon oxidation, giving rise to tunable interlayer charge transfer absorption and photoluminescence.
View Article and Find Full Text PDFIn mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αβ-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus.
View Article and Find Full Text PDF