Over the years, vanadium dioxide, (VO(M1)), has been extensively utilised to fabricate thermochromic thin films with the focus on using external stimuli, such as heat, to modulate the visible through near-infrared transmittance for energy efficiency of buildings and indoor comfort. It is thus valuable to extend the study of thermochromic materials into the mid-infrared (MIR) wavelengths for applications such as smart radiative devices. On top of this, there are numerous challenges with synthesising pure VO (M1) thin films, as most fabrication techniques require the post-annealing of a deposited thin film to convert amorphous VO into a crystalline phase.
View Article and Find Full Text PDFThis paper outlines a simple label-free sensor system for the sensitive, real time measurement of an important protein biomarker of sepsis, using a novel microelectrode integrated onto a needle shaped substrate. Sepsis is a life threatening condition with a high mortality rate, which is characterised by dysregulation of the immune response following infection, leading to organ failure and cardiovascular collapse if untreated. Currently, sepsis testing is typically carried out by taking blood samples which are sent to a central laboratory for processing.
View Article and Find Full Text PDFBackground: The demand for neuromodulatory and recording tools has resulted in a surge of publications describing techniques for fabricating devices and accessories in-house suitable for neurological recordings. However, many of these fabrication protocols use equipment which are not common to biological laboratories, thus limiting researchers to the use of commercial alternatives. New method:We have developed a simple yet robust implantable stimulating surface electrode which can be fabricated in all wet-bench laboratories.
View Article and Find Full Text PDFChemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er(3+)-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er(3+)-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms.
View Article and Find Full Text PDFWe used a terahertz (THz) quantum cascade laser (QCL) as an integrated injection seeded source and amplifier for THz time-domain spectroscopy. A THz input pulse is generated inside a QCL by illuminating the laser facet with a near-IR pulse from a femtosecond laser and amplified using gain switching. The THz output from the QCL is found to saturate upon increasing the amplitude of the THz input power, which indicates that the QCL is operating in an injection seeded regime.
View Article and Find Full Text PDF