Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a neurodegenerative pathology caused by accumulation of mutant neuroserpin (NS) polymers inside the endoplasmic reticulum (ER) of neurons, leading to cellular toxicity and neuronal death. To date, there is no cure for FENIB, and only palliative care is available for FENIB patients, underlining the urgency to develop therapeutic strategies. The purpose of this work was to create a cellular system designed for testing small molecules able to reduce the formation of NS polymers.
View Article and Find Full Text PDFPimasertib, a potent antiproliferative drug, has been extensively studied for treating cancers characterized by dysregulation in the ERK/MAPK signaling pathway, such as melanoma. However, its therapeutic efficacy would greatly benefit from an increased selectivity for tumour cells and a longer half-life. Such improvements may be achieved by combining the rational design of a prodrug with its encapsulation in a potential nanodelivery system.
View Article and Find Full Text PDFA library of novel nicotinic acid derivatives, focusing on the modification of position 6 of the pyridine ring with (thio)ether functionalities, was mostly produced through an innovative green synthetic approach (Cyrene-based) and evaluated for their α-amylase and α-glucosidase inhibitory activity. Compounds and demonstrated micromolar inhibition against α-amylase (IC of 20.5 and 58.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly become a global health pandemic. Among the viral proteins, RNA-dependent RNA polymerase (RdRp) is responsible for viral genome replication and has emerged as a promising target against SARS-CoV-2 infection. Dietary bioactive compounds represent an important source of evolutionarily optimized molecules with antiviral properties against SARS-CoV-2 RdRp.
View Article and Find Full Text PDF