Publications by authors named "D Papavassiliou"

Hydrogen's contribution to a sustainable energy transformation requires intermittent storage technologies, e.g., underground hydrogen storage (UHS).

View Article and Find Full Text PDF

A coarse-grained modeling approach is employed to probe the effect of nanoparticles and their wettability on the stability of the interface between two immiscible fluids. In this study, pure oil (dodecane) and water are placed side by side in a nanochannel, forming a meniscus. Homogeneous hydrophilic nanoparticles, Janus particles, and homogeneous hydrophobic nanoparticles are placed at the oil-water interface, and their dynamics are studied as they rearrange at the oil-water interface.

View Article and Find Full Text PDF

The fate and aggregation of nanoparticles (NPs) in the subsurface are important due to potentially harmful impacts on the environment and human health. This study aims to investigate the effects of flow velocity, particle size, and particle concentration on the aggregation rate of NPs in a diffusion-limited regime and build an equation to predict the aggregation rate when NPs move in the pore space between randomly packed spheres (including mono-disperse, bi-disperse, and tri-disperse spheres). The flow of 0.

View Article and Find Full Text PDF

Hypothesis: The main hypothesis is that the aggregation process for nanoparticles (NPs) propagating in porous media is affected by the structure of the flow field as well as by the properties of the primary NPs. If this were true, then the aggregation could be predicted and controlled. However, to obtain reliable results from computations, one needs to account for the interactions between the NPs as well as the details of the fluid velocity, thus making advances over prior efforts that either ignored the aggregation of NPs, or used probabilistic methods to model aggregation.

View Article and Find Full Text PDF

The stress distribution along the trajectories of passive particles released in turbulent flow were computed with the use of Lagrangian methods and direct numerical simulations. The flow fields selected were transitional Poiseuille-Couette flow situations found in ventricular assist devices and turbulent flows at conditions found in blood pumps. The passive particle properties were selected to represent molecules of the von Willebrand factor (vWF) protein.

View Article and Find Full Text PDF