Modeling of Multi-Electrode Arrays used in neural stimulation can be computationally challenging since it may involve incredibly dense circuits with millions of interconnected resistors, representing current pathways in an electrolyte (resistance matrix), coupled to nonlinear circuits of the stimulating pixels themselves. Here, we present a method for accelerating the modeling of such circuits while minimizing the error of a simplified simulation by using a sparse plus low-rank approximation of the resistance matrix. Specifically, we prove that thresholding of the resistance matrix elements enables its sparsification with minimized error.
View Article and Find Full Text PDFPhototransduction involves changes in concentration of ions and other solutes within photoreceptors and in subretinal space, which affect osmotic pressure and the associated water flow. Corresponding expansion and contraction of cellular layers can be imaged using optoretinography (ORG), based on phase-resolved optical coherence tomography (OCT). Until now, ORG could reliably detect only photoisomerization and phototransduction in photoreceptors, primarily in cones under bright stimuli.
View Article and Find Full Text PDFClinical results with photovoltaic subretinal prosthesis (PRIMA) demonstrated restoration of sight via electrical stimulation of the interneurons in degenerated retina, with resolution matching the 100 μm pixel size. Since scaling the pixels below 75 μm in the current bipolar planar geometry will significantly limit the penetration depth of the electric field and increase stimulation threshold, we explore the possibility of using smaller pixels based on a novel 3-dimensional honeycomb-shaped design. We assessed the long-term biocompatibility and stability of these arrays in rats by investigating the anatomical integration of the retina with flat and 3D implants and response to electrical stimulation over lifetime - up to 32-36 weeks post-implantation in aged rats.
View Article and Find Full Text PDFObjective: To assess the efficacy and safety of the PRIMA neurostimulation system with a subretinal microchip for improving visual acuity (VA) in patients with geographic atrophy (GA) due to age-related macular degeneration (AMD) at 48-months postimplantation.
Design: Feasibility clinical trial of the PRIMA subretinal prosthesis in patients with atrophic AMD, measuring best-corrected ETDRS VA (Clinicaltrials.govNCT03333954).
In patients with atrophic age-related macular degeneration, subretinal photovoltaic implant (PRIMA) provided visual acuity up to 20/440, matching its 100μm pixels size. Next-generation implants with smaller pixels should significantly improve the acuity. This study in rats evaluates removal of a subretinal implant, replacement with a newer device, and the resulting grating acuity in-vivo.
View Article and Find Full Text PDF