Collagen VI (Col-VI) is an extracellular matrix protein primarily known for its bridging role in connective tissues that has been suggested to play a neuroprotective role. In the present study we report increased mRNA and protein expression of Col-VI in the hippocampus and cortex at a late stage of epileptogenesis in a post-status epilepticus (SE) model of epilepsy and in brain tissue from patients with epilepsy. We further present a novel finding that exposure of mouse hippocampal slices to Col-VI augments paired-pulse facilitation in Schaffer collateral-CA1 excitatory synapses indicating decreased release probability of glutamate.
View Article and Find Full Text PDFThe purpose of this study was to identify and validate new putative lead drug targets in drug-resistant mesial temporal lobe epilepsy (mTLE) starting from differentially expressed genes (DEGs) previously identified in mTLE in humans by transcriptome analysis. We identified consensus DEGs among two independent mTLE transcriptome datasets and assigned them status as "lead target" if they (1) were involved in neuronal excitability, (2) were new in mTLE, and (3) were druggable. For this, we created a consensus DEG network in STRING and annotated it with information from the DISEASES database and the Target Central Resource Database (TCRD).
View Article and Find Full Text PDFGene therapy with AAV vectors carrying genes for neuropeptide Y and its receptor Y2 has been shown to inhibit seizures in multiple animal models of epilepsy. It is however unknown how the AAV serotype or the sequence order of these two transgenes in the expression cassette affects the actual parenchymal gene expression levels and the seizure-suppressant efficacy. To address these questions, we compared three viral vector serotypes (AAV1, AAV2 and AAV8) and two transgene sequence orders (NPY-IRES-Y2 and Y2-IRES-NPY) in a rat model of acutely induced seizures.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) has been shown to counteract seizures when overexpressed or delivered into the brain in various animal models of epileptogenesis or chronic epilepsy. The mechanisms underlying this effect have not been investigated. We here demonstrate for the first time that GDNF enhances GABAergic inhibitory drive onto mouse pyramidal neurons by modulating postsynaptic GABA receptors, particularly in perisomatic inhibitory synapses, by GFRα1 mediated activation of the Ret receptor pathway.
View Article and Find Full Text PDF