Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).
View Article and Find Full Text PDFNanoparticles have proven to be attractive carriers in therapeutic drug delivery since they can encapsulate, protect and stabilize a plethora of different drugs, thereby improving therapeutic efficacy and reducing side effects. However, specific targeting of drug-loaded nanoparticles to the tissue of interest and a timely and spatially controlled release of drugs on demand still represent a challenge. Recently, gas-filled microparticles, so-called antibubbles, have been developed which can efficiently encapsulate liquid drug droplets.
View Article and Find Full Text PDFThe identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions.
View Article and Find Full Text PDF