In a recent paper by Sajindra et al. [1], the soil nutrient levels, specifically nitrogen, phosphorus, and potassium, in organic cabbage cultivation were predicted using a deep learning model. This model was designed with a total of four hidden layers, excluding the input and output layers, with each hidden layer meticulously crafted to contain ten nodes.
View Article and Find Full Text PDFThis study investigated the importance of applying explainable artificial intelligence (XAI) on different machine learning (ML) models developed to predict the strength characteristics of basalt-fiber reinforced concrete (BFRC). Even though ML is widely adopted in strength prediction in concrete, the black-box nature of predictions hinders the interpretation of results. Among several attempts to overcome this limitation by using explainable AI, researchers have employed only a single explanation method.
View Article and Find Full Text PDFPredicting the bulk-average velocity (U) in open channels with rigid vegetation is complicated due to the non-linear nature of the parameters. Despite their higher accuracy, existing regression models fail to highlight the feature importance or causality of the respective predictions. Therefore, we propose a method to predict U and the friction factor in the surface layer (f) using tree-based machine learning (ML) models (decision tree, extra tree, and XGBoost).
View Article and Find Full Text PDF