Objective: To assess light irradiance (LI) delivered by two light-curing units (LCU's) and to measure the degree of conversion (DC) of three composite cements, when cured through different thicknesses of two novel CAD-CAM block materials.
Methods: 100-μm-thick films of a dual-curable composite cement (G-CEM LinkAce, GC), a light-curable flowable resin-based composite (RBC) (G-ænial Universal Flo, GC) and a micro-hybrid RBC (G-ænial Posterior, GC) were investigated as luting agents. Two 'polymer-ceramic' CAD-CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were sectioned in slabs with different thicknesses (1, 3 and 5mm).
Purpose: The aim of this article was to provide an overview of the literature on the currently available bulk-fill composites, and to describe the common trends as well as the wide variations. The findings may help the clinician to select the proper material with regard to its applicability in various clinical situations.
Methods: The literature up to October 2016 was reviewed based on a PubMed search (keywords: "bulk-fill OR bulkfill OR bulk fill" AND "composite OR composites").
Objectives: (1) To evaluate the effect of cavity depth and composite type on the interfacial debonding in bulk-filled cavities. (2) To correlate the theoretical shrinkage stress and the level of interfacial debonding determined by acoustic emission (AE).
Methods: 80 sound molars were divided in two groups to receive a Class-I cavity (3.
Objectives: To evaluate the effect of different surface treatments on the bond strength to a composite and a polymer-infiltrated ceramic CAD/CAM block after six-month artificial aging.
Methods And Materials: Two types of CAD/CAM blocks (Cerasmart, GC; Enamic, Vita Zahnfabrik) were cut in slabs of 4-mm thickness, divided into six groups, and subjected to the following surface treatments: group 1: no treatment; group 2: sandblasting (SB); group 3: SB + silane (Si); group 4: SB + Si + flowable composite (see below); group 5: 5% hydrofluoric acid etching (HF) + Si; and group 6: 37% phosphoric acid etching (HPO) + Si. Sections of the same group were luted together (n=3: 3 sandwich specimens/group) using a dual-cure self-adhesive cement for all groups, except for the sections of group 4 that were luted using a light-curing flowable composite.