Publications by authors named "D P Kreutzweiser"

Unlabelled: The river continuum concept (RCC) predicts a downstream shift in the reliance of aquatic consumers from terrestrial to aquatic carbon sources, but this concept has rarely been assessed with longitudinal studies. Similarly, there are no studies addressing how forestry related disturbances to the structure of headwater food webs manifest (accumulate/dissipate) downstream and/or whether forest management alters natural longitudinal trends predicted by the RCC. Using stable isotopes of carbon, nitrogen and hydrogen, we investigated how: 1) autochthony in macroinvertebrates and fish change from small streams to larger downstream sites within a basin with minimal forest management (New Brunswick, Canada); 2) longitudinal trends in autochthony and food web length compare among three basins with different forest management intensity [intensive (harvest and replanting), extensive (harvest only), minimal] to detect potential cumulative/dissipative effects; and 3) forest management intensity and other catchment variables are influencing food web dynamics.

View Article and Find Full Text PDF

Forest harvesting affects dissolved organic matter (DOM) and aqueous mercury inputs as well as the food web structure in small-headwater streams, but how these upstream changes manifest downstream is unclear. To address this uncertainty, we examined DOM quality, autochthony in the caddisfly Hydropsychidae (using δ H), and methylmercury (MeHg) concentrations in stream water and the caddisfly along a longitudinal gradient (first- to fourth-order streams, subcatchments of 50-1900 ha) in paired partially harvested and reference catchments in central Ontario, Canada. Although measures of DOM quality (specific ultraviolet absorbance at 254 nm 2.

View Article and Find Full Text PDF

The effects of forest harvesting on headwaters are quite well understood, yet our understanding of whether impacts accumulate or dissipate downstream is limited. To address this, we investigated whether several biotic indicators changed from smaller to larger downstream sites (n = 6) within three basins that had intensive, extensive or minimal forest management in New Brunswick (Canada). Biofilm biomass and grazer abundance significantly increased from upstream to downstream, whereas organic matter decomposition and the autotrophic index of biofilms decreased.

View Article and Find Full Text PDF

Though effects of forest harvesting on small streams are well documented, little is known about the cumulative effects in downstream systems. The hierarchical nature and longitudinal connectivity of river networks make them fundamentally cumulative, but lateral and vertical connectivity and instream processes can dissipate the downstream transport of water and materials. To elucidate such effects, we investigated how a suite of abiotic indicators changed from small streams to larger downstream sites (n = 6) within three basins ranging in forest management intensity (intensive, extensive, minimal) in New Brunswick (Canada) in the summer and fall of 2017 and 2018.

View Article and Find Full Text PDF

Riparian zones contain areas of strong hydrological connectivity between land and stream, referred to as variable source areas (VSAs), and are considered biogeochemical control points. However, little is known about whether VSAs influence stream communities and whether this connectivity is affected by forest management. To address this, we used multiple biotic and abiotic indicators to (1) examine the influence of VSAs on riparian vegetation and stream ecosystems by comparing VSA and non-VSA reaches and (2) explore how forest management may affect the influence of VSAs on stream ecosystems.

View Article and Find Full Text PDF