Background: Parasitic nematodes, significant pathogens for humans, animals, and plants, depend on diverse organ systems for intra-host survival. Understanding the cellular diversity and molecular variations underlying these functions holds promise for developing novel therapeutics, with specific emphasis on the neuromuscular system's functional diversity. The nematode intestine, crucial for anthelmintic therapies, exhibits diverse cellular phenotypes, and unraveling this diversity at the single-cell level is essential for advancing knowledge in anthelmintic research across various organ systems.
View Article and Find Full Text PDFEstablishing methods to investigate treatments that induce cell death in parasitic nematodes will promote experimental approaches to elucidate mechanisms and to identify prospective anthelmintics capable of inducing this outcome. Here, we extended recent progress on a method to monitor cell death and to identify small molecule inhibitors in to , a phylogenetically distant parasitic nematode of significance for both human and agricultural animal health. We utilized a diverse group of small molecule inhibitors referred to as nematode intestinal toxins/toxicants (NITs) coupled with motility, cytological and cell death assays to resolve gross effects on motility and individual cells and organ systems of two larval stages in culture.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
December 2020
In research focused on the intestine of parasitic nematodes, we recently identified small molecule inhibitors toxic to intestinal cells of larval Ascaris suum (nematode intestinal toxins/toxicants; "NITs"). Some NITs had anthelmintic activity across the phylogenetic diversity of the Nematoda. The whole-worm motility inhibition assay quantified anthelmintic activity, but worm responses to NITs in relation to pathology or affected molecular pathways was not acquired.
View Article and Find Full Text PDFEfforts to identify new drugs for therapeutic and preventive treatments against parasitic nematodes have gained increasing interest with expanding pathogen omics databases and drug databases from which new anthelmintic compounds might be identified. Here, a novel approach focused on integrating a pan-Nematoda multi-omics data targeted to a specific nematode organ system (the intestinal tract) with evidence-based filtering and chemogenomic screening was undertaken. Based on de novo computational target prioritization of the 3,564 conserved intestine genes in A.
View Article and Find Full Text PDFThe biological and molecular complexity of nematodes has impeded research on development of new therapies for treatment and control. We have focused on the versatility of the nematode intestine as a target for new therapies. To that end, it is desirable to establish a broad and deep understanding of the molecular architecture underlying intestinal cell functions at the pan-Nematoda level.
View Article and Find Full Text PDF