Purpose: The purpose of the study is to characterize the prototype of the new Octavius1500 (PTW, Freiburg, Germany) 2D ion chamber array, covering its use in different phantom setups, from the most basic solid water sandwich setup to the more complex cylindrical Octavius® 4D (Oct4D) (PTW) phantom/detector combination. The new detector houses nearly twice the amount of ion chambers as its predecessors (Seven29 and Octavius729), thereby tackling one of the most important limitations of ion chamber (or diode) arrays, namely the limited detector density. The 0.
View Article and Find Full Text PDFJ Appl Clin Med Phys
November 2013
Although much literature has been devoted to portal dosimetry with the Varian amorphous silicon (aSi) portal imager, the majority of the described methods are not routinely adopted because implementation procedures are cumbersome and not within easy reach of most radiotherapy centers. To make improved portal dosimetry solutions more generally available, we have investigated the possibility of converting optimized configurations into ready-to-use standardized datasets. Firstly, for all commonly used photon energies (6, 10, 15, 18, and 20 MV), basic beam data acquired on 20 aSi panels were used to assess the interpanel reproducibility.
View Article and Find Full Text PDFPurpose: With the increased commercial availability of intensity modulated arc therapy (IMAT) comes the need for comprehensive QA programs, covering the different aspects of this newly available technology. This manuscript proposes such a program for the RapidArc (RA) (Varian Medical Systems, Palo Alto) IMAT solution.
Methods: The program was developed and tested out for a Millennium120 MLC on iX Clinacs and a HighDefinition MLC on a Novalis TX, using a variety of measurement equipment including Gafchromic film, 2D ion chamber arrays (Seven29 and StarCheck, PTW, Freiburg, Germany) with inclinometer and Octavius phantom, the Delta4 systam (ScandiDos, Uppsala, Sweden) and the portal imager (EPID).
The purpose of this work is to provide guidelines for the routine use of portal dosimetry and in vivo diode measurements to verify intensity-modulated radiotherapy (IMRT) treatments. To achieve tolerance levels that are sensitive enough to intercept problems, both the portal dosimetry and the in vivo procedure must be optimised. Portal dosimetry was improved by the introduction of an optimised two-dimensional (2D) profile correction, which also accounted for the effect of backscatter from the R-arm.
View Article and Find Full Text PDFIntroduction: EORTC trial 22991 was designed to evaluate the addition of concomitant and adjuvant short-term hormonal treatments to curative radiotherapy in terms of disease-free survival for patients with intermediate risk localized prostate cancer. In order to assess the compliance to the 3D conformal radiotherapy protocol guidelines, all participating centres were requested to participate in a dummy run procedure. An individual case review was performed for the largest recruiting centres as well.
View Article and Find Full Text PDF