Background: Current methods of measuring disease progression of neurodegenerative disorders, including Parkinson's disease (PD), largely rely on composite clinical rating scales, which are prone to subjective biases and lack the sensitivity to detect progression signals in a timely manner. Digital health technology (DHT)-derived measures offer potential solutions to provide objective, precise, and sensitive measures that address these limitations. However, the complexity of DHT datasets and the potential to derive numerous digital features that were not previously possible to measure pose challenges, including in selection of the most important digital features and construction of composite digital biomarkers.
View Article and Find Full Text PDFPurpose: To provide consensus-based recommendations for use of vagus nerve stimulation (VNS) therapy in the management of pediatric epilepsy.
Methods: Delphi methodology with two rounds of online survey was used to build consensus. A steering committee developed 43 statements related to pediatric epilepsy and the use of VNS therapy, which were evaluated by a panel of 12 neurologists/neurosurgeons with expertise in pediatric epilepsy, who graded their agreement with each statement on a scale of 1 ("I do not agree at all") to 5 ("I strongly agree").
The development of methods to detect and treat intracranial large-vessel occlusions (LVOs) has revolutionized the management of acute ischemic stroke. CT angiography (CTA) of the head and neck is effective in depicting LVOs and widely used in the evaluation of patients who have had a stroke. Ongoing efforts are now focused on the potential to detect and treat intracranial medium-vessel occlusions (MeVOs), which by definition are smaller than LVOs and thus more difficult to detect with CTA.
View Article and Find Full Text PDFFast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior.
View Article and Find Full Text PDF