COVID-19 has significant long-term impacts, including a chronic syndrome known as long-COVID, characterized by persistent symptoms post-recovery. The inflammatory response during acute infection is hypothesized to influence long-term outcomes. This study aimed to identify inflammatory biomarkers predictive of functional outcomes one year after hospital discharge.
View Article and Find Full Text PDFObjective: To investigate the relationship between the levels of adipokines and other endocrine biomarkers and patient outcomes in hospitalized patients with COVID-19.
Methods: In a prospective study that included 213 subjects with COVID-19 admitted to the intensive care unit, we measured the levels of cortisol, C-peptide, glucagon-like peptide-1, insulin, peptide YY, ghrelin, leptin, and resistin.; their contributions to patient clustering, disease severity, and predicting in-hospital mortality were analyzed.
The issue of MeHg contamination is a significant concern due to its detrimental impact on the environment. This study aimed to thoroughly investigate the effects of MeHg on neurodevelopmental biomarkers, as there is a lack of systematic reviews in this area. We conducted a comprehensive search of three databases (PubMed, Scopus, and Web of Science) and found 522 records, which were then meticulously reviewed by two independent reviewers.
View Article and Find Full Text PDFProtein aggregation is a common age-associated process and can be a pathological hallmark of various neurodegenerative conditions, possibly because of an age-associated decline in the activity of components of the proteostasis network. The specific molecular drivers of protein aggregation in certain cell types are not well understood, posing tremendous challenges to current research aimed at devising strategies to treat neurodegenerative diseases. This preface introduces the special issue "Aging and Neurodegeneration: from molecular mechanisms to therapeutic interventions," featuring articles that assess the drivers of pathology in the aging cell, including oxidative stress, protein glycation/aggregation, and mitochondrial impairment.
View Article and Find Full Text PDFJ Nutr Biochem
August 2024
Major depressive disorder (MDD) is a global health concern, affecting over 250 million individuals worldwide. In recent years, the gut-brain axis has emerged as a promising field for understanding the pathophysiology of MDD. Microbial metabolites, such as short-chain fatty acids (SCFAs)-acetate, butyrate, and propionate-, have gained attention for their potential to influence epigenetic modifications within the host brain.
View Article and Find Full Text PDF