Publications by authors named "D P Corey"

Mutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.

View Article and Find Full Text PDF

Vibrations are ubiquitous in nature, shaping behavior across the animal kingdom. For mammals, mechanical vibrations acting on the body are detected by mechanoreceptors of the skin and deep tissues and processed by the somatosensory system, while sound waves traveling through air are captured by the cochlea and encoded in the auditory system. Here, we report that mechanical vibrations detected by the body's Pacinian corpuscle neurons, which are distinguished by their ability to entrain to high-frequency (40-1,000 Hz) environmental vibrations, are prominently encoded by neurons in the lateral cortex of the inferior colliculus (LCIC) of the midbrain.

View Article and Find Full Text PDF
Article Synopsis
  • * A new clinical trial simulator (CTS) has been developed using five models that track changes in functional test performances, offering a way to optimize trial parameters and endpoints for DMD studies.
  • * This report illustrates the CTS’s functionality through two case studies, showcasing how it can enhance trial design while maintaining statistical significance, ultimately preventing unnecessary increases in trial size and duration.
View Article and Find Full Text PDF

The recent Nobel Prizes awarded to Ambros and Ruvkun have refocused attention on microRNAs (miRNAs). The importance of miRNAs for basic science has always been clear, but the application to therapy has lagged behind. This delay has been made even more apparent by the accelerating pace of successful programs using duplex RNAs and antisense oligonucleotides to target mRNA.

View Article and Find Full Text PDF

Usher syndrome type 1F (USH1F), resulting from mutations in the protocadherin-15 (PCDH15) gene, is characterized by congenital lack of hearing and balance, and progressive blindness in the form of retinitis pigmentosa. In this study, we explore an approach for USH1F gene therapy, exceeding the single AAV packaging limit by employing a dual-adeno-associated virus (dual-AAV) strategy to deliver the full-length PCDH15 coding sequence. We demonstrate the efficacy of this strategy in mouse USH1F models, effectively restoring hearing and balance in these mice.

View Article and Find Full Text PDF