Objective: To determine the extent to which changes in plasma proteins, previously predictive of cardiometabolic outcomes, predict changes in two diabetes remission trials.
Research Design And Methods: We applied SomaSignal predictive tests (each derived from ∼5,000 plasma protein measurements using aptamer-based proteomics assay) to baseline and 1-year samples of trial intervention (Diabetes Remission Clinical Trial [DiRECT], n = 118, and Diabetes Intervention Accentuating Diet and Enhancing Metabolism [DIADEM-I], n = 66) and control (DiRECT, n = 144, DIADEM-I, n = 76) group participants.
Results: Mean (SD) weight loss in DiRECT (U.
A reliable, individualized, and dynamic surrogate of cardiovascular risk, synoptic for key biologic mechanisms, could shorten the path for drug development, enhance drug cost-effectiveness and improve patient outcomes. We used highly multiplexed proteomics to address these objectives, measuring about 5000 proteins in each of 32,130 archived plasma samples from 22,849 participants in nine clinical studies. We used machine learning to derive a 27-protein model predicting 4-year likelihood of myocardial infarction, stroke, heart failure, or death.
View Article and Find Full Text PDFSimilarity in facial characteristics between relatives suggests a strong genetic component underlies facial variation. While there have been numerous studies of the genetics of facial abnormalities and, more recently, single nucleotide polymorphism (SNP) genome-wide association studies (GWASs) of normal facial variation, little is known about the role of genetic structural variation in determining facial shape. In a sample of Bantu African children, we found that only 9% of common copy number variants (CNVs) and 10-kb CNV analysis windows are well tagged by SNPs (r ≥ 0.
View Article and Find Full Text PDF