Publications by authors named "D Orgad"

Uniaxial pressure provides an efficient approach to control charge density waves in YBaCuO. It can enhance the correlation volume of ubiquitous short-range two-dimensional charge-density-wave correlations, and induces a long-range three-dimensional charge density wave, otherwise only accessible at large magnetic fields. Here, we use x-ray diffraction to study the strain dependence of these charge density waves and uncover direct evidence for a form of competition between them.

View Article and Find Full Text PDF

We explore the effects of spatial locality on the dynamics of random quantum systems subject to a Markovian noise. To this end, we study a model in which the system Hamiltonian and its couplings to the noise are random matrices whose entries decay as power laws of distance, with distinct exponents α_{H}, α_{L}. The steady state is always featureless, but the rate at which it is approached exhibits three phases depending on α_{H} and α_{L}: a phase where the approach is asymptotically exponential as a result of a gap in the spectrum of the Lindblad superoperator that generates the dynamics, and two gapless phases with subexponential relaxation, distinguished by the manner in which the gap decreases with system size.

View Article and Find Full Text PDF

We discuss the decay rates of chaotic quantum systems coupled to noise. We model both the Hamiltonian and the system-noise coupling by random N×N Hermitian matrices, and study the spectral properties of the resulting Liouvillian superoperator. We consider various random-matrix ensembles, and find that for all of them the asymptotic decay rate remains nonzero in the thermodynamic limit; i.

View Article and Find Full Text PDF

Short-range charge-density wave correlations are ubiquitous in underdoped cuprates. They are largely confined to the copper-oxygen planes and typically oscillate out of phase from one unit cell to the next in the c direction. Recently, it was found that a considerably longer-range charge-density wave order develops in YBa_{2}Cu_{3}O_{6+x} above a sharply defined crossover magnetic field.

View Article and Find Full Text PDF

We show that strong Luttinger correlations of the electron liquid in armchair carbon nanotubes significantly enhance the onset temperature of the putative twist Peierls instability and lead to its 1/R3 dependence on the tube radius. Depending on the values of the coupling constants the umklapp processes can either assist or compete with the twist instability. In the case of a competition the umklapp processes win in wide tubes.

View Article and Find Full Text PDF