Publications by authors named "D Oravec"

Vertebral fractures are a common and debilitating consequence of osteoporosis. Bone mineral density (BMD), measured by dual energy x-ray absorptiometry (DXA), is the clinical standard for assessing overall bone quantity but falls short in accurately predicting vertebral fracture. Fracture risk prediction may be improved by incorporating metrics of microstructural organization from an appropriate imaging modality.

View Article and Find Full Text PDF

Bone fractures due to osteoporosis are a significant problem. Limited accuracy of standard bone mineral density (BMD) for fracture risk assessment, combined with low adherence to bone health screening precludes identification of those at risk of fracture. Because of the wide availability of digital breast tomosynthesis (DBT) imaging, bone screening using a DBT scanner at the time of breast screening has been proposed.

View Article and Find Full Text PDF

Despite effective therapies for those at risk of osteoporotic fracture, low adherence to screening guidelines and limited accuracy of bone mineral density (BMD) in predicting fracture risk preclude identification of those at risk. Because of high adherence to routine mammography, bone health screening at the time of mammography using a digital breast tomosynthesis (DBT) scanner has been suggested as a potential solution. BMD and bone microstructure can be measured from the wrist using a DBT scanner.

View Article and Find Full Text PDF

Vertebral fractures are the most common osteoporotic fractures, but their prediction using standard bone mineral density (BMD) measurements from dual energy X-ray absorptiometry (DXA) is limited in accuracy. Stiffness, displacement, and strain distribution properties derived from digital tomosynthesis-based digital volume correlation (DTS-DVC) have been suggested as clinically measurable metrics of vertebral bone quality. However, the extent to which these properties correlate to vertebral strength is unknown.

View Article and Find Full Text PDF

Background: Arthroplasty with artificial disc replacement for surgical treatment of cervical spine degeneration was introduced with the notion that motion-preserving approaches would prevent development of adjacent segment disease. Though clinical outcomes favor arthroplasty over the commonly used anterior cervical discectomy with fusion approach, clinical studies confirming the biomechanical basis of these results are lacking. The aim of this study was to compare intervertebral kinematics between arthroplasty and fusion patients 6.

View Article and Find Full Text PDF