Publications by authors named "D Oquillas Izquierdo"

Suboptimal culture conditions during in vitro maturation (IVM) affect oocyte developmental competence and the viability of the resulting embryo. Three-dimensional (3D) culture systems provide a more biologically appropriate environment compared to traditional two-dimensional (2D) cultures. The aim of this study was to evaluate the effect of liquid marble (LM) microbioreactors as a 3D culture system on IVM and the subsequent embryo development of prepubertal goat oocytes.

View Article and Find Full Text PDF

Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both.

View Article and Find Full Text PDF

Oocytes spontaneously resume meiosis following their liberation from follicles, preventing full competence acquisition. Biphasic IVM (CAPA-IVM) maintains oocytes in meiotic arrest to improve developmental competence, and it specially affects poorly developed oocytes. We assessed the effect of CAPA-IVM on oocytes from small (<3mm) and large (>3mm) follicles of prepubertal goats.

View Article and Find Full Text PDF

Goat production is affected by reproductive seasonality. In vitro embryo production (IVEP) could overcome this effect. This study aimed to evaluate the impact of the season of semen collection/freezing on IVEP of prepubertal goat oocytes and on sperm quality and functionality concerning capacitation.

View Article and Find Full Text PDF

The oocyte competence of prepubertal females is lower compared to that of adults, mainly because they originate from small follicles. In adult females, the germinal vesicle (GV) and epidermal growth factor receptor (EGFR) have been associated with oocyte competence. This study aimed to analyze GV chromatin configuration and EGFR expression in prepubertal goat and sheep oocytes obtained from small (<3 mm) and large (≥3 mm) follicles and compare them with those from adults.

View Article and Find Full Text PDF