Energy transfer processes among units of light-harvesting homo-oligomers impact the efficiency of these materials as components in organic optoelectronic devices such as solar cells. Perylene diimide (PDI), a prototypical dye, features exceptional light absorption and highly tunable optical and electronic properties. These properties can be modulated by varying the number of PDI units and linkers between them.
View Article and Find Full Text PDFPhotoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways.
View Article and Find Full Text PDFSimulation of electronic dynamics in realistically large molecular systems is a demanding task that has not yet achieved the same level of quantitative prediction already realized for its static counterpart. This is particularly true for processes occurring beyond the Born-Oppenheimer regime. Non-adiabatic molecular dynamics (NAMD) simulations suffer from two convoluted sources of error: numerical algorithms for dynamics and electronic structure calculations.
View Article and Find Full Text PDFThe efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations.
View Article and Find Full Text PDFWe explore the diverse origins of unpolarized absorption and emission of molecular polygons consisting of π-conjugated oligomer chains held in a bent geometry by strain controlled at the vertex units. For this purpose, we make use of atomistic nonadiabatic excited-state molecular dynamics simulations of a bichromophore molecular polygon (digon) with bent chromophore chains. Both structural and photoexcited dynamics were found to affect polarization features.
View Article and Find Full Text PDF