The remarkable ability of the motor system to adapt to novel environments has traditionally been investigated using kinematically non-redundant tasks, such as planar reaching movements. This limitation prevents the study of how the motor system achieves adaptation by altering the movement patterns of our redundant body. To address this issue, we developed a redundant motor task in which participants reached for targets with the tip of a virtual stick held with both hands.
View Article and Find Full Text PDFMaximal voluntary force is known to be enhanced by shouting during sustained maximal voluntary contraction (MVC) via the enhancement of motor cortical excitability. However, whether excitatory input to the primary motor cortex from areas other than the motor-related cortical area induces muscular force-enhancing effects on the exertion of sustained maximal force remains unclear. Therefore, by examining motor evoked potentials to transcranial magnetic stimulation during sustained MVC and assessing handgrip force, the present study aimed to investigate the effects of subliminal goal-priming with motivational rewards on the state of the motor system.
View Article and Find Full Text PDFSensorimotor learning can change the tuning of neurons in motor-related brain areas and rotate their preferred directions (PDs). These PD rotations are commonly interpreted as reflecting motor command changes; however, cortical neurons that display PD rotations also contribute to sensorimotor learning. Sensorimotor learning should, therefore, alter not only motor commands but also the tuning of neurons responsible for this learning, and thus impact subsequent learning ability.
View Article and Find Full Text PDFDecision making is often necessary before performing an action. Traditionally, it has been assumed that decision making and motor control are independent, sequential processes. Ogasa et al.
View Article and Find Full Text PDFJ Clin Med
July 2024
This study explores the efficacy of texture analysis by using preoperative multi-slice spiral computed tomography (MSCT) to non-invasively determine the grade of cellular differentiation in head and neck squamous cell carcinoma (HNSCC). In a retrospective study, MSCT scans of patients with HNSCC were analyzed and classified based on its histological grade as moderately differentiated, well-differentiated, or poorly differentiated. The location of the tumor was categorized as either in the bone or in soft tissues.
View Article and Find Full Text PDF