Publications by authors named "D Nida"

Boswellia dalzielii is a tall tree (more than 13 m high) that produces aromatic white flowers. This plant is commonly used in indigenous medicine across Africa against diarrhea, malaria, vomiting, inflammation and arthritis. The present study focuses on the anti-inflammatory and anti-arthritis potential of methanol extract of Boswellia dalzielii (BDME).

View Article and Find Full Text PDF

Background: Rheumatoid arthritis, disease of unknown causes is a rheumatic and autoimmune pathology, recognised for its increasing frequency and its adverse consequences. It is a disease that occurs in most cases between 50 and 60 years and women are more affected than men. This study aimed at evaluating immunomodulatory and anti-arthritis capacity of aqueous and methanol extracts of stem bark of Piptadeniastrum africanum (Mimosaceae).

View Article and Find Full Text PDF

Background: The quantification of surface groups attached to non-woven fibers is an important step in developing nanofiber biosensing detection technologies. A method utilizing biotin functionalized quantum dots (QDs) 655 for quantitative analysis of available biotin binding sites within avidin immobilized on electrospun nanofiber membranes was developed.

Results: A method for quantifying nanofiber bound avidin using biotin functionalized QDs is presented.

View Article and Find Full Text PDF

Quantum dots (QDs) have many appealing properties for biological fluorescence imaging, but exhibit photostabilities that are dependent upon surface passivation to minimize susceptibility to oxygen and light. Here, through spectroscopy and imaging techniques, we compare the photostability of micelle-encapsulated QDs with QDs passivated with either crosslinked amphiphilic polymers or crosslink-free amphiphilic polymers. Both crosslinked and crosslink-free amphiphilic polymer passivation strategies produced QDs with high photoluminescence stability for exposure to light under ambient conditions.

View Article and Find Full Text PDF

Conventional histopathology involves sampling, sectioning and staining of tissue specimens prior to microscopic evaluation, and provides diagnostic information at a single location and point in time. In vivo microscopy and molecular-targeted optical labeling are two rapidly developing fields, which together have the potential to provide anatomical and functional indications of disease by staining and imaging tissue in situ. To address the need for high-resolution imaging instrumentation, we have developed a compact, robust, and inexpensive fiber-optic microendoscopy system based around wide-field LED illumination, a flexible 1 mm diameter fiber-optic bundle, and a color CCD camera.

View Article and Find Full Text PDF